Finding LayerZero Sybil Clusters

    Overview

    Introduction

    The analysis aims to uncover the connections between LayerZero addresses that are suspected of engaging in sybil activities. Sybil attacks involve creating multiple fake identities to gain a disproportionate influence or advantage in a decentralized network. By examining transactional patterns, we can identify potential sybil addresses and their interconnections.

    Methodology

    The analysis leverages a multi-step approach to identify and refine suspect addresses:

    1. Data Aggregation: Transactions from LayerZero are aggregated to compute metrics such as transaction count, total volume in USD, and distinct contracts involved.
    2. Initial Criteria Filtering: Addresses are filtered based on preliminary criteria:
      • Transaction count between 1 and 5.
      • Total transaction volume exceeding $1,000.
      • All transactions occur within a 24-hour period.
      • Less than three distinct source contracts used.
    3. Refinement with Temporal Correlation and Contract Patterns: Further refinement of suspect addresses includes:
      • Transactions occurring within a single hour.
      • Limited distinct destination transaction hashes.
    4. Detailing Interlinked Addresses: Addresses are cross-referenced to find similar transactional patterns across different chains and addresses, indicating possible sybil behavior.
    5. Source of Funds Analysis: By tracking the origin of funds, we identify common sources funding multiple suspect addresses, establishing a network of interconnected addresses.
    6. Clustering and Final Selection: Addresses are clustered based on their source of funds and transactional behavior. Only clusters with a significant number of addresses (e.g., 20 or more) are considered.

    Findings

    1. Transaction Patterns: The suspect addresses display a consistent pattern of low transaction counts with relatively high volumes, all within short time frames, often under 24 hours. This rapid and concentrated activity suggests coordinated behavior typical of sybil attacks.

    2. Common Funding Sources: Many of the suspect addresses share common funding sources. By analyzing the origin addresses of the first deposit transactions, we found that a small number of addresses funded multiple suspect addresses. This commonality strongly indicates centralized control over multiple addresses.

    3. Interlinked Chains: The addresses often participate across multiple blockchain networks (e.g., Arbitrum, Avalanche, BNB Chain, Optimism, Polygon). These interlinked activities across chains suggest an effort to mask their sybil behavior by spreading it across different ecosystems.

    4. Temporal Correlation: The timing of transactions among suspect addresses is highly correlated. Many transactions occur within a short period of each other, indicating synchronized activities. This temporal proximity is a hallmark of sybil behavior, where multiple addresses are controlled by a single entity.

    5. Distinct Source and Destination Contracts: The limited number of distinct contracts involved in these transactions suggests that these addresses are not engaging in diverse or organic activity. Instead, they are likely using a few contracts repetitively to execute their strategies.

    6. Clusters of Activity: By clustering the suspect addresses based on their transactional behavior and funding sources, we identified distinct groups that share similar characteristics. These clusters help pinpoint the potential operators behind these sybil attacks.

    Conclusion

    The detailed analysis reveals that the suspect LayerZero addresses are highly likely to be engaged in sybil activities. Their behavior is characterized by rapid, high-volume transactions, common funding sources, and synchronized activity across multiple chains. These findings underscore the need for enhanced monitoring and detection mechanisms to prevent sybil attacks and maintain the integrity of the LayerZero network.

    Detailed Findings

    Step 1: Initial Wallet Filtering

    We began by applying an initial set of criteria to filter out wallets that show suspicious activity patterns. The filters were:

    • Transaction Count (tx_count): Wallets with fewer than 5 transactions were selected. This low activity suggests the wallets may not be engaging in regular, organic transactions.
    • Total Volume in USD (total_volume_usd): Wallets with transaction volumes greater than $1000 were selected. High volume in a short span can indicate non-organic activity.
    • Transaction Time Span: Wallets with transactions spanning less than 24 hours were selected. This short time frame indicates concentrated and potentially automated activity.
    • Distinct Source Contracts: Wallets using fewer than 3 distinct source contracts were selected. Limited contract usage suggests the transactions are not diverse, which is unusual for regular users.

    Step 2: Identifying Similar Behavioral Groups

    Next, we grouped wallets based on similar behavioral patterns:

    • Same Source and Destination Chain: Wallets that operate on the same source and destination chains.
    • Same Transaction Date: Wallets with transactions occurring on the same date.
    • Same Number of Transactions: Wallets with an identical number of transactions.
    • Same Transaction Volume: Wallets with identical transaction volumes.

    By clustering wallets with these shared characteristics, we identified groups that likely exhibit coordinated behavior.

    Step 3: Source of Funds Analysis

    We then traced the source of funds for these grouped wallets to see if they originate from the same address. We considered both the date and volume of the initial deposits to establish connections:

    • Common Funding Source: We identified if multiple wallets received their initial funds from the same address.
    • Consistent Deposit Dates and Volumes: We ensured the deposit dates and volumes matched the transactional patterns observed in LayerZero.

    Step 4: Sub-Clustering Based on Source of Funds

    We further refined our clusters by examining wallets that:

    • Same Source of Funds: Wallets funded by the same source address.
    • Same Deposit Date: Wallets receiving their initial deposit on the same date.
    • Same Deposit Volume: Wallets receiving the same amount in their initial deposit.
    • Matching LayerZero Activity: Wallets whose first deposit date matched their first activity date on LayerZero. This suggests the wallets were created solely to farm airdrops.

    Step 5: Visualization of Clusters

    Finally, we visualized these clusters to illustrate the connections between the suspect wallets. We used a Python notebook to generate graphs showing nodes representing the source of funds and arrows indicating the wallets clustered by similar behavior. The color of the nodes corresponds to the source chain.

    Conclusions

    The rigorous analysis and filtering process have led to the identification of 263 new Sybil wallets, grouped into the 4 detected clusters. By comparing these wallets with previously detected patterns from LayerZero, Nansen, and Chaos, we ensured a high level of accuracy and minimized false positives. This ongoing refinement and pattern analysis are crucial for maintaining robust fraud detection measures and enhancing the security and reliability of the LayerZero airdrop. The exclusion of wallets that did not match established patterns further underscores the precision of our approach, reinforcing the integrity of the final list of identified Sybil wallets.

    Here again full list of new wallets detected by clusters' group:

    Cluster 1Cluster 2Cluster 3Cluster 4
    0x4bbf5e5d9034a4ce5b91cded23ddd3259446b4a40x4bbf5e5d9034a4ce5b91cded23ddd3259446b4a40x9dda9b71c2994c8d4ab87dcfba979996bde6603a0x74f03ff5847ffd9fa80cb9ea1fd8731ac78598c5
    0x664c3c54fe8b289ce766c46d177af767c4cf88870x664c3c54fe8b289ce766c46d177af767c4cf88870x4d5ddeb821002b2fffb252f27220a580b19490db0xcb66809929dd64513b9a040b72708a99d8259fca
    0xa3ea78e1f954530900f643d23cfbefc2550d7f450xa3ea78e1f954530900f643d23cfbefc2550d7f450x276c70f84dd149361eafb749f84d2ee7862e31280x32e4983c1f04852629fdea38ec364327db5db3fb
    0xc0125d2d1dc4a940f879cf616c7b3877b655dabb0xc0125d2d1dc4a940f879cf616c7b3877b655dabb0xc20724e668653c7c63eb9fc42c86d39d6c375f030xb8d5ad38387dd9adb89f1984eba78cb2917aff90
    0x3d834b6d432ed621f9bdc65afe14870f3b2f8aba0x3d834b6d432ed621f9bdc65afe14870f3b2f8aba0x4b8f775a2ef9c3487b2d8c924fae69a819ee51840xd93b8c25f7ccca6060d939b64eb052f270c92cf1
    0x6147d8fe1a99b10285ea832c8a53cec4e072983d0x2ad5dc2ae55e7e0d7a33716592dbf925c314d2f20x714294110b398a9093b5b4a031139a5b551a629c0x85826a2109b857dc2f6ed25949e5cb72f6ddbe2f
    0x2ad5dc2ae55e7e0d7a33716592dbf925c314d2f20x572e0b9d4355c016dff18e84920021710e32a41e0x20aa0ecb21e9c64ffff5c26748ef8ac8baea09a40x311796d3b730b759eb9dea1706c140d9b1a32321
    0xcc0c2b6c5ad8bf3952c5a0d092d624843fed9e0a0x2ba244332e9f02e7cb689441096623277d95d62f0xa76f58fa2b0336d65379ee7998552f4e64a772f60x3e492879ad42c7f336cad4020ea9b2883eb24897
    0x572e0b9d4355c016dff18e84920021710e32a41e0x508e8eccc9b9ca43257a40c8ab43afb0a2e7c2670x5d51498041055cdfb804b505c0aa05f1ee6362a00xe52934ec0550732dcf89822839f2c4728137e367
    0x78d3e7af62ff607f3adf694b021fb3aff5a899c90x94bed2f1134771616bad58b42e3b47449bc5db130xc73471de2e9f3434de12e6c606759e41573691d10x62ea324c487ae058d4f0c42eaf21eb19c24278b7
    0x5edef3509ee9b048b338716121bb55f986661b990x510500773e700a1004bc0062b7babc7f5b5d82eb0xeff71aeb188b3d1e5a796b7bd6c4d2db425ff5830xd6c2d5f6f27b721ef3a178915bfeb129215c2e71
    0xef57b11e9a78d7afbfd9b770b0d54de6e8a326590xef57b11e9a78d7afbfd9b770b0d54de6e8a326590xcfe16b33cd09603f17303a3301c6bb5b7279ddd20x2db57605cfea11f30675db3b64674ab98308833f
    0x510500773e700a1004bc0062b7babc7f5b5d82eb0x17ca75b452f23164927ab2d9973234d4bb219cc70xb3362d76088e56a6c3b7de390bf377884251d8ba0x9c4bbd81283cf71c8611a571be7279ef6c0bdd4f
    0x7d7f1c3a205054aca3414cd05175de67aeab9c660x514a6bffb138fe4a808a8fe02d277a56f392d6360x51c808ccd9b2cb1fac1bd71c94c23c16fd82b0390x234e607aa99ca4654cdc88dc16429a924e3f0d68
    0x1b75972b1e835abe83e0f8c597f4f7fca7c276680x853822c60955fad016a41cd3967759c2c5387b5d0x992191c2c2344c8ce8034214f723a7e4da49ac9c0xf26ea2352d3d25ae334417ce4e5c709f6375eb2c
    0x94bed2f1134771616bad58b42e3b47449bc5db130x7a4d969dfa2fb4170b39c79bb135294724e508340xc79b92d833521cee364c3d9dec60af5a8b75d8ce0x3d1bc5689832abdf794aa7ba0cea21431e649c12
    0x514a6bffb138fe4a808a8fe02d277a56f392d6360x7ca3f4a05f76be11d43388a19398bb965ef15da30x896996b44c51df51207f506f175f2c43b7366f5c0x59a8fe25b85375d805ac4724c93f7db6dac8fe3d
    0x7a4d969dfa2fb4170b39c79bb135294724e508340x817fa1b5ba03ec8480970d1a647595d301754d950xb97749de0c4bc391dfe8c3680cba4869f521f3ea0xc7682410eeb5b041ffb8d9a75552dc37e14cdf22
    0xd36c6dd3f5354fecf14b3bc44136df1c73d62baf0xebaa27932e6fb458ef4a0eb4086eb7c8049eb8c50x6c88ae31a2c9cc74591fcaef43df44f396f0b1360x97f78b04847cae372a1891c4e4061f62a78b1192
    0x2ba244332e9f02e7cb689441096623277d95d62f0x78d3e7af62ff607f3adf694b021fb3aff5a899c90x087ae04ab1d9edf3bc45420eb53cfc53ce5f97fb0x018038111c696448081879923256bc60387f9b54
    0x853822c60955fad016a41cd3967759c2c5387b5d0xd36c6dd3f5354fecf14b3bc44136df1c73d62baf0x3de9c2854826b5b6aa109522ffb1e2f41f1c19690xa61317d38e46ea66cec3b4839b83160cad6bcd12
    0x26bc9a972f66ed3f6fdad8376d22b8c510af24c80x7d7f1c3a205054aca3414cd05175de67aeab9c660x43aed122601a73bc5b2fbad02f03994f35e28c9b0x1b502e3d6166e4aaa5d39e3b6d73428aa3d7c284
    0x817fa1b5ba03ec8480970d1a647595d301754d950x5edef3509ee9b048b338716121bb55f986661b990xc3999074b768572adcefda04af65c4c2fc0af2500xf6f94f010037b6108bf25cfe9bc8525c75d76991
    0x6abc8b7f444216e3ea93641c2f37cbbe5d6e543b0x6abc8b7f444216e3ea93641c2f37cbbe5d6e543b0xf5b64cde1996eef1011b5c14b4eb3fca0d04c25d0x3986c65e4a73f420c7a3ec019b959dbf3f6f1938
    0x7ca3f4a05f76be11d43388a19398bb965ef15da30x80a0450bffa7520114a682d79997513965364c070xe8363fc84d23f50e2e189a2ef38ce54263c412910xb85ca236d5b8bb219582a61a7fb0277e533d1743
    0x80a0450bffa7520114a682d79997513965364c070xd80766ae42b5a8cdc143a8292d8973f94c7467610x313be9cb1eb9b896cc4bc29199feabe01185d8990xc1d04a68ee20702103e46bafd096dc64674a1ec1
    0x17ca75b452f23164927ab2d9973234d4bb219cc70xcc0c2b6c5ad8bf3952c5a0d092d624843fed9e0a0xecf348536f6a92027555003a1c83b97efb1dc9320xe0ecfc65afc762ce00ddd4ff88e0c5a4a3f5eb8a
    0x508e8eccc9b9ca43257a40c8ab43afb0a2e7c2670x26bc9a972f66ed3f6fdad8376d22b8c510af24c80xb4dc8e22fe3cbb0a78be5787325fc0f2627b8c770xd541a7414ce6856d133e715e01f31132a799925d
    0xd80766ae42b5a8cdc143a8292d8973f94c7467610x1b75972b1e835abe83e0f8c597f4f7fca7c276680x454354668efc4d5fc21d8e9610cdda646f2f34840xb6b531ba00be04166ac85613735cd755b83a8eda
    0xebaa27932e6fb458ef4a0eb4086eb7c8049eb8c50x49717347af30b0cd394634bac2c70aae02a37c060xe7acb3526d7f4ddfb182c6dfa563e500d3c8711f0xc39d7105c090da742dff99b02e87db9b8f7e6e69
    0x49717347af30b0cd394634bac2c70aae02a37c060xbd910b5d2f9d1fc069dc3bc1eedb1c721e6248b10x957a3208931eb26b9ea8b123113ebba6f68744f70x635312a2e148d76c6d41ae46b1c2d1e6bbb90238
    0xbd910b5d2f9d1fc069dc3bc1eedb1c721e6248b10x2b0d5b0b930f511d283ec94c588c5f307fb6f97a0xf62dacc90113ccd8c1ab4d9fe1cee4d68c8272670xb4bddb17e15ced55d519e10cedd91f06adb39c97
    0x2b0d5b0b930f511d283ec94c588c5f307fb6f97a0xfa26ec68b6784716d0bac98f4cda5219ed98cd0c0xb9072652a038d02ba51176fc2d909f6cfc7bb24d0x88bfcbaa2de3e6a70c26ed4186909b8e1e9287d0
    0xd6dd3f5f066425bed56a51f423117c25b3d7d4aa0xd6dd3f5f066425bed56a51f423117c25b3d7d4aa0xabf74984f45e7caebb20930fe737267f1e2e75c90xcca3147c5353c641977f304e1b9b792db28047df
    0x0e94edc5ee1181fa83215650837aa90e0e1c44d10x773a1f0f79ceb66a592dbf32f551ae5f767420f80xbaf19b248af68b4b7b5d1912864c955132fefb93
    0xef434517254f086327307a14b889e7abc000c40f0xef434517254f086327307a14b889e7abc000c40f0xe18ddd67b176634c798047b6a58bc38fc2292082
    0xfa26ec68b6784716d0bac98f4cda5219ed98cd0c0x0e94edc5ee1181fa83215650837aa90e0e1c44d10xc396946cfe019d80da8079d986a940875b8ffc9d
    0x773a1f0f79ceb66a592dbf32f551ae5f767420f80xe7acb3526d7f4ddfb182c6dfa563e500d3c8711f0xa8013d86a6c4f1b989e9945df8c11dd5d1f02c28
    0x313be9cb1eb9b896cc4bc29199feabe01185d8990xa76f58fa2b0336d65379ee7998552f4e64a772f60x3aafe8af9dabd7ddb3e811376e770ceae8a3a56c
    0x5d51498041055cdfb804b505c0aa05f1ee6362a00xf5b64cde1996eef1011b5c14b4eb3fca0d04c25d0x45e0a6c797abcec0f277f2aa069d5eac8d343d6f
    0xcfe16b33cd09603f17303a3301c6bb5b7279ddd20xc79b92d833521cee364c3d9dec60af5a8b75d8ce0xe415b9b8a3a722d61dcf4aff54eab4743c43435a
    0x6c88ae31a2c9cc74591fcaef43df44f396f0b1360xb9072652a038d02ba51176fc2d909f6cfc7bb24d0x79d2ecee1d04d669892cbd2c23872520722fec94
    0xc73471de2e9f3434de12e6c606759e41573691d10xf62dacc90113ccd8c1ab4d9fe1cee4d68c827267
    0x454354668efc4d5fc21d8e9610cdda646f2f34840x51c808ccd9b2cb1fac1bd71c94c23c16fd82b039
    0xc79b92d833521cee364c3d9dec60af5a8b75d8ce0xabf74984f45e7caebb20930fe737267f1e2e75c9
    0xabf74984f45e7caebb20930fe737267f1e2e75c90x454354668efc4d5fc21d8e9610cdda646f2f3484
    0xf62dacc90113ccd8c1ab4d9fe1cee4d68c8272670x4b8f775a2ef9c3487b2d8c924fae69a819ee5184
    0xf5b64cde1996eef1011b5c14b4eb3fca0d04c25d0x20aa0ecb21e9c64ffff5c26748ef8ac8baea09a4
    0x20aa0ecb21e9c64ffff5c26748ef8ac8baea09a40x43aed122601a73bc5b2fbad02f03994f35e28c9b
    0xb3362d76088e56a6c3b7de390bf377884251d8ba0x5d51498041055cdfb804b505c0aa05f1ee6362a0
    0x4b8f775a2ef9c3487b2d8c924fae69a819ee51840xb97749de0c4bc391dfe8c3680cba4869f521f3ea
    0xecf348536f6a92027555003a1c83b97efb1dc9320x276c70f84dd149361eafb749f84d2ee7862e3128
    0x51c808ccd9b2cb1fac1bd71c94c23c16fd82b0390xc3999074b768572adcefda04af65c4c2fc0af250
    0x43aed122601a73bc5b2fbad02f03994f35e28c9b0xecf348536f6a92027555003a1c83b97efb1dc932
    0x714294110b398a9093b5b4a031139a5b551a629c0x9dda9b71c2994c8d4ab87dcfba979996bde6603a
    0xeff71aeb188b3d1e5a796b7bd6c4d2db425ff5830x4d5ddeb821002b2fffb252f27220a580b19490db
    0x3de9c2854826b5b6aa109522ffb1e2f41f1c19690x957a3208931eb26b9ea8b123113ebba6f68744f7
    0xb97749de0c4bc391dfe8c3680cba4869f521f3ea0xeff71aeb188b3d1e5a796b7bd6c4d2db425ff583
    0x957a3208931eb26b9ea8b123113ebba6f68744f70x896996b44c51df51207f506f175f2c43b7366f5c
    0x992191c2c2344c8ce8034214f723a7e4da49ac9c0xc20724e668653c7c63eb9fc42c86d39d6c375f03
    0xc20724e668653c7c63eb9fc42c86d39d6c375f030xb4dc8e22fe3cbb0a78be5787325fc0f2627b8c77
    0x9dda9b71c2994c8d4ab87dcfba979996bde6603a0xc73471de2e9f3434de12e6c606759e41573691d1
    0xa76f58fa2b0336d65379ee7998552f4e64a772f60xcfe16b33cd09603f17303a3301c6bb5b7279ddd2
    0xc3999074b768572adcefda04af65c4c2fc0af2500xe8363fc84d23f50e2e189a2ef38ce54263c41291
    0x276c70f84dd149361eafb749f84d2ee7862e31280x992191c2c2344c8ce8034214f723a7e4da49ac9c
    0xe8363fc84d23f50e2e189a2ef38ce54263c412910x714294110b398a9093b5b4a031139a5b551a629c
    0xe7acb3526d7f4ddfb182c6dfa563e500d3c8711f0x087ae04ab1d9edf3bc45420eb53cfc53ce5f97fb
    0xb4dc8e22fe3cbb0a78be5787325fc0f2627b8c770x313be9cb1eb9b896cc4bc29199feabe01185d899
    0x087ae04ab1d9edf3bc45420eb53cfc53ce5f97fb0x6c88ae31a2c9cc74591fcaef43df44f396f0b136
    0x896996b44c51df51207f506f175f2c43b7366f5c0xb3362d76088e56a6c3b7de390bf377884251d8ba
    0x4d5ddeb821002b2fffb252f27220a580b19490db0x3de9c2854826b5b6aa109522ffb1e2f41f1c1969
    0xb9072652a038d02ba51176fc2d909f6cfc7bb24d
    0xd6c2d5f6f27b721ef3a178915bfeb129215c2e71
    0x62ea324c487ae058d4f0c42eaf21eb19c24278b7
    0xf26ea2352d3d25ae334417ce4e5c709f6375eb2c
    0x3e492879ad42c7f336cad4020ea9b2883eb24897
    0xcb66809929dd64513b9a040b72708a99d8259fca
    0x74f03ff5847ffd9fa80cb9ea1fd8731ac78598c5
    0x59a8fe25b85375d805ac4724c93f7db6dac8fe3d
    0x3d1bc5689832abdf794aa7ba0cea21431e649c12
    0x7c4516aff08763b86f821199eabade9c4411e456
    0x46444c3ae5a85bc1f03469c4f38f7a803cbbf4a5
    0x97f78b04847cae372a1891c4e4061f62a78b1192
    0xe4b3d8f7bcbba7e5893f670112830877c333ff49
    0xe52934ec0550732dcf89822839f2c4728137e367
    0x32e4983c1f04852629fdea38ec364327db5db3fb
    0x2db57605cfea11f30675db3b64674ab98308833f
    0xb8d5ad38387dd9adb89f1984eba78cb2917aff90
    0x234e607aa99ca4654cdc88dc16429a924e3f0d68
    0x85826a2109b857dc2f6ed25949e5cb72f6ddbe2f
    0xc7682410eeb5b041ffb8d9a75552dc37e14cdf22
    0x9c4bbd81283cf71c8611a571be7279ef6c0bdd4f
    0x311796d3b730b759eb9dea1706c140d9b1a32321
    0xd93b8c25f7ccca6060d939b64eb052f270c92cf1
    0xd541a7414ce6856d133e715e01f31132a799925d
    0xa61317d38e46ea66cec3b4839b83160cad6bcd12
    0xb85ca236d5b8bb219582a61a7fb0277e533d1743
    0xb6b531ba00be04166ac85613735cd755b83a8eda
    0x018038111c696448081879923256bc60387f9b54
    0x6f3c8f85b430dda0c6173a29b762fc93bbf2a6d9
    0xe415b9b8a3a722d61dcf4aff54eab4743c43435a
    0xa8013d86a6c4f1b989e9945df8c11dd5d1f02c28
    0xe0ecfc65afc762ce00ddd4ff88e0c5a4a3f5eb8a
    0xe18ddd67b176634c798047b6a58bc38fc2292082
    0x3986c65e4a73f420c7a3ec019b959dbf3f6f1938
    0xc39d7105c090da742dff99b02e87db9b8f7e6e69
    0xb4bddb17e15ced55d519e10cedd91f06adb39c97
    0xbaf19b248af68b4b7b5d1912864c955132fefb93
    0x3aafe8af9dabd7ddb3e811376e770ceae8a3a56c
    0x79d2ecee1d04d669892cbd2c23872520722fec94
    0xcca3147c5353c641977f304e1b9b792db28047df
    0x635312a2e148d76c6d41ae46b1c2d1e6bbb90238
    0x45e0a6c797abcec0f277f2aa069d5eac8d343d6f
    0x86b12cc0c9fbcd6f1a116c219ec9dfd3f15cc628
    0x1b502e3d6166e4aaa5d39e3b6d73428aa3d7c284
    0xc1d04a68ee20702103e46bafd096dc64674a1ec1
    0xc396946cfe019d80da8079d986a940875b8ffc9d
    0x88bfcbaa2de3e6a70c26ed4186909b8e1e9287d0
    0xf6f94f010037b6108bf25cfe9bc8525c75d76991
    • Name: AdriĆ  Parcerisas
    • Discord: adriaparcerisas
    • Twitter: @adriaparcerisas
    • Ethereum Wallet: 0x91707502A8DFDC523f7a6f2c218cC9a52777d5ad
    • Date: May 29th, 2024
    Author Information

    Final List of Sybil Wallets: Excluding wallets from initial LayerZero, Nansen and Chaos list:

    This section presents a comprehensive analysis of newly detected Sybil wallets, based on patterns observed in wallets previously identified by LayerZero, Nansen, and Chaos. The key points of the analysis are detailed below:

    1. Final New Sybil Wallets Detected: This section lists wallets newly identified as Sybil wallets in the latest analysis. These wallets exhibit activity patterns similar to some of the clusters detected in previous analyses by LayerZero, Nansen, and Chaos.

    2. Filtering Process: The process involved:

    • Checking which wallets were previously detected in LayerZero, Nansen, and Chaos analyses.
    • Identifying patterns in these detected wallets and forming new clusters based on these patterns.
    • Detecting 4 different clusters in total.
    • Examining wallets not previously detected by LayerZero, Nansen, or Chaos to see if they matched any of the 4 identified clusters.
    • Excluding wallets that did not match any cluster to avoid false positives.
    1. Exclusion of Previously Detected Wallets: Wallets already identified in the initial analyses were excluded to highlight newly detected wallets that may have previously evaded detection. This continuous update and refinement process enhances the effectiveness of fraud detection measures.

    The final list comprises 263 wallets belonging to all of the 4 clusters. Wallets that did not match any of these clusters were filtered out to avoid false positives, ensuring the accuracy and reliability of the detection process.

    Below is the list of the new wallets detected as sybils by cluster. The full work can be found on this google sheet.

    Loading...
    Loading...
    Loading...
    db_img
    db_img
    db_img