Month | Avg Daily Users(Month) | Monthly Users | Monthly Transactions | AvgDU - MAU Ratio(%) | |
---|---|---|---|---|---|
1 | 2019-06-01 00:00:00.000 | 198.375476 | 495 | 1313 | 40.0758537374 |
2 | 2019-07-01 00:00:00.000 | 1875.714872 | 20920 | 257151 | 8.9661322753 |
3 | 2019-08-01 00:00:00.000 | 6800.11101 | 295105 | 6278413 | 2.3043022009 |
4 | 2019-09-01 00:00:00.000 | 18802.620849 | 341617 | 2644671 | 5.5040061967 |
5 | 2019-10-01 00:00:00.000 | 33688.354931 | 503217 | 4627762 | 6.694597943 |
6 | 2019-11-01 00:00:00.000 | 128916.346139 | 2984719 | 15344385 | 4.319212165 |
7 | 2019-12-01 00:00:00.000 | 49725.087958 | 831822 | 10091391 | 5.9778519873 |
8 | 2020-01-01 00:00:00.000 | 65712.516657 | 1281568 | 12903173 | 5.1275091651 |
9 | 2020-02-01 00:00:00.000 | 54270.722815 | 943957 | 10199551 | 5.7492791319 |
10 | 2020-03-01 00:00:00.000 | 43597.013025 | 888763 | 7647860 | 4.9053586867 |
11 | 2020-04-01 00:00:00.000 | 29251.260239 | 635808 | 8143707 | 4.6006436281 |
12 | 2020-05-01 00:00:00.000 | 19712.901419 | 394204 | 4923228 | 5.0006852845 |
13 | 2020-06-01 00:00:00.000 | 82190.306558 | 857164 | 5787915 | 9.5886325788 |
14 | 2020-07-01 00:00:00.000 | 20528.131545 | 370608 | 6325540 | 5.539041668 |
15 | 2020-08-01 00:00:00.000 | 15442.30512 | 301175 | 6415806 | 5.1273529078 |
16 | 2020-09-01 00:00:00.000 | 12189.60822 | 153280 | 5576525 | 7.9525105819 |
17 | 2020-10-01 00:00:00.000 | 19659.777363 | 256953 | 6754348 | 7.65111805 |
18 | 2020-11-01 00:00:00.000 | 28498.416211 | 236412 | 6055804 | 12.0545556956 |
19 | 2020-12-01 00:00:00.000 | 21090.904434 | 264972 | 9309644 | 7.9596728839 |
20 | 2021-01-01 00:00:00.000 | 16153.892516 | 209620 | 11920106 | 7.7062744566 |
i_danKaia: Daily - Monthly Users
Updated 2025-02-26
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
›
⌄
WITH user_activity AS (
SELECT
from_address
, tx_hash
, DATE_TRUNC('day', block_timestamp) AS activity_day
, DATE_TRUNC('month', block_timestamp) AS activity_month
FROM kaia.core.fact_transactions
),
dau AS (
SELECT
activity_day
, COUNT(DISTINCT from_address) AS daily_active_users
FROM user_activity
GROUP BY 1
)
SELECT
DATE_TRUNC('month', u.activity_day) AS "Month"
, AVG(daily_active_users) AS "Avg Daily Users(Month)"
, COUNT(DISTINCT from_address) AS "Monthly Users"
, COUNT(tx_hash) AS "Monthly Transactions"
, ("Avg Daily Users(Month)" / "Monthly Users") * 100 AS "AvgDU - MAU Ratio(%)"
FROM user_activity u
JOIN dau d ON d.activity_day = u.activity_day
GROUP BY 1
ORDER BY 1
Last run: about 1 month ago
69
5KB
446s