Quarter | Avg Daily Users(Quarter) | Quarterly Users | AvgDU - QAU Ratio(%) | |
---|---|---|---|---|
1 | 2019-04-01 00:00:00.000 | 198.375476 | 495 | 40.0758537374 |
2 | 2019-07-01 00:00:00.000 | 10119.892727 | 631278 | 1.6030802162 |
3 | 2019-10-01 00:00:00.000 | 87675.610297 | 4208728 | 2.0831854731 |
4 | 2020-01-01 00:00:00.000 | 56417.166837 | 2923405 | 1.9298443711 |
5 | 2020-04-01 00:00:00.000 | 43011.496203 | 1797313 | 2.3930999332 |
6 | 2020-07-01 00:00:00.000 | 16208.324976 | 780787 | 2.0758958558 |
7 | 2020-10-01 00:00:00.000 | 22681.882451 | 643030 | 3.527344362 |
8 | 2021-01-01 00:00:00.000 | 14714.398045 | 529851 | 2.7770822448 |
9 | 2021-04-01 00:00:00.000 | 22341.877575 | 615045 | 3.6325598249 |
10 | 2021-07-01 00:00:00.000 | 28083.481021 | 597934 | 4.6967526551 |
11 | 2021-10-01 00:00:00.000 | 199347.12801 | 2714597 | 7.3435256876 |
12 | 2022-01-01 00:00:00.000 | 243841.479289 | 2317153 | 10.5233223395 |
13 | 2022-04-01 00:00:00.000 | 139315.663696 | 2509686 | 5.5511192913 |
14 | 2022-07-01 00:00:00.000 | 32800.479851 | 1171352 | 2.8002240019 |
15 | 2022-10-01 00:00:00.000 | 26248.107432 | 991872 | 2.6463200324 |
16 | 2023-01-01 00:00:00.000 | 41333.663751 | 1268955 | 3.2572994118 |
17 | 2023-04-01 00:00:00.000 | 209943.913034 | 4094042 | 5.1280351553 |
18 | 2023-07-01 00:00:00.000 | 99528.141531 | 2391372 | 4.1619681727 |
19 | 2023-10-01 00:00:00.000 | 89363.121528 | 2362845 | 3.7820136965 |
20 | 2024-01-01 00:00:00.000 | 131938.83906 | 5274921 | 2.5012476786 |
i_danKaia: Daily - Quarterly Users
Updated 2025-02-26
99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
›
⌄
WITH user_activity AS (
SELECT
from_address
, DATE_TRUNC('day', block_timestamp) AS activity_day
, DATE_TRUNC('quarter', block_timestamp) AS activity_quarter
FROM kaia.core.fact_transactions
),
dau AS (
SELECT
activity_day
, COUNT(DISTINCT from_address) AS daily_active_users
FROM user_activity
GROUP BY 1
)
SELECT
DATE_TRUNC('quarter', u.activity_day) AS "Quarter"
, AVG(daily_active_users) AS "Avg Daily Users(Quarter)"
, COUNT(DISTINCT from_address) AS "Quarterly Users"
, ("Avg Daily Users(Quarter)" / "Quarterly Users") * 100 AS "AvgDU - QAU Ratio(%)"
FROM user_activity u
JOIN dau d ON d.activity_day = u.activity_day
GROUP BY 1
ORDER BY 1
Last run: about 1 month ago
24
1KB
356s