Monad Data Enginewarm-chocolate
    Updated 2025-03-12
    WITH daily_transactions AS (
    SELECT
    DATE_TRUNC('day', block_timestamp) AS date,
    COUNT(*) AS daily_tx_count,
    COUNT(DISTINCT from_address) AS unique_users
    FROM MONAD.testnet.fact_transactions
    WHERE block_timestamp >= CURRENT_TIMESTAMP - INTERVAL '7 days'
    GROUP BY 1
    )
    SELECT
    date AS "📅 Date",
    daily_tx_count AS "💫 Daily Transactions",
    unique_users AS "👥 Unique Users",
    ROUND(daily_tx_count::DECIMAL / unique_users, 2) AS "📊 Tx per User",
    LAG(daily_tx_count, 1) OVER (ORDER BY date) AS "↩️ Previous Day Tx",
    ROUND(((daily_tx_count::DECIMAL / LAG(daily_tx_count, 1) OVER (ORDER BY date)) - 1) * 100, 2) AS "📈 Day-over-Day Change %"
    FROM daily_transactions
    ORDER BY date DESC;
    Last run: 17 days ago
    📅 Date
    💫 Daily Transactions
    👥 Unique Users
    📊 Tx per User
    ↩️ Previous Day Tx
    📈 Day-over-Day Change %
    1
    2025-03-12 00:00:00.0002084249121362179.7625675081-18.82
    2
    2025-03-11 00:00:00.00025675081197684912.9911903796115.69
    3
    2025-03-10 00:00:00.00011903796118265010.07959543924.06
    4
    2025-03-09 00:00:00.000959543912948147.4110708955-10.4
    5
    2025-03-08 00:00:00.0001070895515113897.0910752657-0.41
    6
    2025-03-07 00:00:00.0001075265716407396.55103920273.47
    7
    2025-03-06 00:00:00.0001039202715017606.923086200236.73
    8
    2025-03-05 00:00:00.00030862005392255.72
    8
    515B
    10s